Experimental Studies Using Median Polish Procedure to Reduce Alarm Rates in Data Cubes of Intrusion Data

نویسندگان

  • Jorge Levera
  • Benjamín Barán
  • Robert L. Grossman
چکیده

The overwhelming number of alarms generated by rule-based network intrusion detection systems makes the task of network security operators ineffective. Preliminary results on an approach called EXOLAP shows that false positives alarms can be avoided by detecting changes on the stream of alarms using a data cube and median polish procedure. A data cube aggregates alarms by hierarchical time frames, rule number, target port number and other feature attributes. The median polish procedure is used on materialized relational views of the data cube to detect changes on the stream of alarms. EXOLAP shows promising results on labeled and unlabeled test sets by focusing on exceptions on the normal stream of alarms, diverting the attention away from false positives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

EIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks

Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Ant Colony Optimization with Classification Algorithms used for Intrusion Detection

IDS which are increasingly a key part of system defense are used to identify abnormal activities in a computer system. In general, the traditional intrusion detection relies on the extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been used in ...

متن کامل

Adaptive Anomaly Intrusion Detection System Using Optimized Hoeffding Tree

Anomaly Intrusion Detection System is used to identify a new attack in the network by identifying the deviations in the network traffic patterns. Though it identifies new attacks efficiently, the false alarm rate is usually high in this system. As there may be attack in the network at any time and as the input traffic varies over time, we need a model which efficiently identifies the change in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004